Mechanosynthesis, Characterization, and Antimicrobial Evaluation of Cadmium(II), Nickel(II), Iron(III), and Chromium(III) Chelates Formed with Paracetamol and Aspirin
Keywords:
Mechanosynthesis, Characterization, and Anti-Microbial Screening, Cd(II), Ni(II), Fe(III), and Cr(III) chelates, Paracetamol and AspirinAbstract
This study describes the mechanochemical synthesis of cadmium (Cd(II)), nickel (Ni(II)), and chromium (Cr(III)) as well as iron (Fe(III)) complexes with aspirin and paracetamol, achieved through simple grinding of their metal chlorides without the use of solvents. Additionally, these complexes were prepared using traditional solution-based methods for comparison. Both mechanochemical and conventional products were characterized by examining their solubility, melting points, conductivity, magnetic moments, and infrared (IR) spectra. The IR and analytical data indicated that the complexes formed were identical regardless of the synthesis method. Job's method analysis showed a 1:2 metal-to-ligand ratio for both aspirin and paracetamol complexes. High molar conductance values, ranging from 109.42 to 207.61 Ω-1cm2mol-1 for aspirin complexes and 77.32 to 100.22 Ω-1cm2mol-1 for paracetamol complexes, suggest their electrolytic nature in dimethylsulfoxide (DMSO). The complexes were soluble in dimethylformamide (DMF) and DMSO, with paracetamol complexes also dissolving in acetone, methanol, and diethylether (DEE), and aspirin complexes being soluble in methanol, DMF, and DMSO. Except for the Cr(III) complex, all aspirin complexes were insoluble in water. Magnetic moment values confirmed that all synthesized complexes were paramagnetic, except for the diamagnetic cadmium complexes. The complexes displayed higher thermal stability, decomposing between 163.7-198.3 °C, compared to their respective ligands which decomposed at 170 °C for paracetamol and 137 °C for aspirin. The antimicrobial activity of the ligands and their complexes was tested against two bacterial strains, Escherichia coli and Staphylococcus aureus, and two fungal strains, Mucus species and Candida species. The ligands exhibited limited activity against most organisms, whereas most complexes showed activity at all test concentrations, with paracetamol complexes being effective only at higher concentrations.
References
Adams, C. J., Haddow, M. F., Hughes, R. J. L., Kurawa, M. A., & Orpen, A. G. (2010). Coordination Chemistry of Platinum and Palladium in the Solid-State: Synthesis of Imidazole and Pyrazole Complexes. Dalton Transactions, 39(1), 3714-3724.
Adams, C. J., Orpen, A. G., & Kurawa, M. A. (2010). Coordination Chemistry in the Solid State: Reactivity of Man-ganese and Cadmium Chlorides with Imidazole and Pyrazole and Their Hydrochlorides. Inorganic Chemistry, 49(22), 10475-10485.
Adekunle, F. A. O. (2013). Ni(II), Co(II), Mn(II) and Zn(II) Complexes of 5,6-Dihydro-5,6-Epoxy-1,10-Phenanthroline: Synthesis and Spectroscopy Studies. International Journal of Basic and Applied Sciences, 13(3), 130403-9292.
Adzila, S., Sopyan, L., & Handi, M. (2012). Mechanochemical Synthesis of Hydroxyapatite Nanopowder: Effect of Rotation Speed and Milling Time on Powder Properties. Applied Mechanics and Materials, 110-116(1), 3632. https://doi.org/10.4028/www.scientific.net/AMM.110-116.3632
Agbaje, O. B. A., Wakil, S. M., & Osowole, A. A. (2014). Synthesis, Spectroscopic Characterization, and Antimicrobial Activities of Some Mixed Drug Metal (II) Complexes of Sulfamethoxazole and Paracetamol. Journal of Chemical Research, 1(1), 1–18.
Ahluwalia, V. K., & Kidwai, M. (2004). New Trends in Green Chemistry: Organic Synthesis in Solid State. Kluwer Academic Publishers.
Ahmad, J. (2010). Hepatology and Transplant Hepatology: A Case-Based Approach. Springer, 194.
Aliyu, H. N., & Abdullahi, H. J. (2009). Synthesis and Characterization of Manganese(II), Cobalt(II), Nickel(II), and Copper(II) N,N’-Bis(Benzoin)Ethylenediiminato Complexes. Bayero Journal of Pure and Applied Sciences, 2(1), 110-112.
Al Noor, T. H., Ghanim, F. H., & Kindeel, A. S. (2014). Synthesis, Characterization, and Antibacterial Activity of Mn(II), Fe(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) Mixed-Ligand Complexes Containing Fural-2-Carboxylic Acid and 1,10-Phenanthroline. Advances in Physics Theories and Applications, 29(1), ISSN 2224-719X.
Amer, J., Hadi, D., Nur, H., & Hermawan, H. (2015). Structure-Property Relationships of Iron-Hydroxyapatite Ce-ramic Matrix Nanocomposite Fabricated Using Mechanosynthesis Method. Materials Science and Engineering C, 51(1), 294–299. https://doi.org/10.1016/j.msec.2015.03.019
Amin, M. (2014). One-Pot Solvent-Free Synthesis, Cytotoxicity, and In Vitro Urease Inhibitory Activity of Zinc (II)-Piroxicam Complex. World Journal of Pharmacy and Pharmaceutical Sciences, 3(4), 89-99.
Amudat, A., & Obaleye, J. (2007). Synthesis, Characterization, and Antibacterial Activity of Aspirin and Paraceta-mol-Metal Complexes. Biokemistri, 19(1), 9-15.
Balaz, P. (2008). Mechanochemistry in Nanoscience and Minerals Engineering. Springer.
Benista, M. J., & Nowak, J. Z. (2014). Paracetamol: Mechanism of Action, Applications, and Safety Concerns. Acta Poloniae Pharmaceutica - Drug Research, 71(1), 11–23.
Bergmann, I., Diekmann, A., Heitjans, P., & Becker, K. D. (2008). Mechanosynthesis of Nanocrystalline Iron Ger-manate Fe2GeO4 with a Nonequilibrium Cation Distribution. Solid State Ionics, 18(1), 349–352.
Boudeville, P., Vert, M., El Briak-BenAbdeslam, H., & Ginebra, M. P. (2007). Wet or Dry Mechanochemical Synthesis of Calcium Phosphate? Influence of the Water Content on DCPD-CaO Reaction Kinetics. Acta Materialia Inc., 1(1), 378-386.
Braga, D., Grepioni, F., Maini, L., Brescello, R., & Catairea, L. (2008). Cryst. Eng. Comm. Journal of Materials Chemistry, 10(1), 469-471.
British National Formulary. (2003). British Medical and Royal Pharmaceutical Society of Great Britain. 45th ed.
British National Formulary for Children. (2006). British Medical Journal and Royal Pharmaceutical Society.
Burgess, J. (1978). Metal Ions in Solution. John Wiley & Sons, Inc.
Cisneros-de, R., Cero, R., Beltra, H. I., Soto-Castruita, E., & Pons-Jiménez, M. (2016). Solid and Liquid Supramolecular Complexes by Solid-Solid Mechanosynthesis. Arabian Journal of Chemistry, 1(1), http://dx.doi.org/10.1016/j.arabjc.2016.08.008.
Chandrathilaka, A. M. D. S., Hettiarachchi, C. V., & Ileperuma, O. A. (2013). Spectrophotometric and pH Metric Studies on Pb(II), Cd(II), Al(III), and Cu(II) Complexes of Paracetamol and Ascorbic Acid. Journal of the National Science Foundation of Sri Lanka, 41(4), 337-344.
Chou, R., & Huffman, L. H. (2007). Medication for Acute and Chronic Low Back Pain: A Review of the Evidence for an American Pain Society/American College of Physicians Clinical Practice Guideline. Annals of Internal Medicine, 147(7), 505-514.
Cortés-Escobedo, C. A., Bolarín-Miró, A. M., Jesús, F. S., Valenzuela, R., Juárez-Camacho, E. P., Samperio-Gómez, I. L., & Ammar, S. (2013). Y3Fe5O12 Prepared by Mechanosynthesis from Different Iron Sources. Materials Chemistry and Physics, 1(1), 41-46.
Cristovoa, B. (2011). Spectral, Thermal, and Magnetic Properties of Cu(II) and Ni(II) Complexes with Schiff Base Ligands. Journal of the Serbian Chemical Society, 76(12), 1639-1648.
Daly, F. F., Fountain, J. S., Murray, L., Graudins, A., & Buckley, N. A. (2008). Guidelines for the Management of Pa-racetamol Poisoning in Australia and New Zealand: Explanation and Elaboration. A Consensus Statement from Clinical Toxicologists Consultant to the Australian Poisons Information Centers. Medical Journal of Australia, 188(5), 296-301.
Prochowicz, D., Franckevičius, M., Cieślak, S., Zakeeruddin, M. L., & Grätzel, J. (2016). Mechanosynthesis of the Hybrid Perovskite CH3NH3PbI3: Characterization and the Corresponding Solar Cell Efficiency. Journal of Ma-terials Chemistry, 3(1), 1-7.
Dostál, J., Paulová, H., Táborská, E., & Tomandl, J. P. D. (2014). Essentials of medical chemistry and biochemistry. Brno.
Ferna, F. (1999). Mechanochemistry: An overview. Pure and Applied Chemistry, 17(4), 581–586.
Friš, T. (2013). Mechanochemistry: From solvent-free, low-energy synthesis to (photo- or thermo-) chemically-driven mechanical motion.
El-Halawa, R. A., Mahal, A., Zabin, S. A., Ibrahim, M., Al-Refai, M., & Kaimari, T. (2015). Synthesis, characterization, and antifungal activity of some metal complexes derived from quinoxaloylhydrazone. World Journal of Organic Chemistry, 3(1), 1-8.
Friscic, T., Halasz, I., Strukil, V., Maksic, M. E., & Dinnebier, R. E. (2012). Clean and efficient synthesis using mecha-nochemistry: Coordination polymers, metal-organic frameworks, and metallodrugs. Croatica Chemica Acta, 85(3), 367-378.
Garay, A. L., Pichon, A., & James, S. L. (2007). Opportunity for new and cleaner synthesis. Chemical Society Reviews, 846-855.
Hassan, S. W., Umar, R. A., Lawal, M., Bilbis, L. S., & Muhammed, B. Y. (2006). Evaluation of antifungal activity of Ficus sycomorus L. (Moraceae). Best Journal, 3(2), 18-25.
Heinike, G. (1984). Tribochemistry. Academie-Verlag.
Holleman, A. F., Wiberg, E., & Wiberg, N. (1985). Zink. Lehrbuch der Anorganischen Chemie. Walter de Gruyter, 1034-1041. ISBN 3-11-007511-3.
Iurowa, K. W. I., & Amrat, K. G. (2007). Some aspects of mechanochemical reactions. Materials Science-Poland, 25(1).
James, S. L., Adams, C. J., Bolm, C., Braga, D., & Waddell, D. C. (2012). Mechanochemistry: Opportunities for new and cleaner synthesis. Chemical Society Reviews, 41(413-447).
Hernandez, J., & Bolm, C. (2015). [Cp*RhCl2]2: Mechanosynthesis and applications in C–H bond functionalizations under ball-milling conditions. Chemical Communications, 51(12582-12584). The Royal Society of Chemistry.
Karthikeya, M., Glen, R. C., & Bend, A. (2005). General melting point prediction based on a diverse compound data set and artificial neutral network. Journal of Chemical Information and Modeling, 45(3), 581-590.
Kaupp, G. (2009). Mechanochemistry: The varied application of mechanical bond-breaking. CrystEngComm, 11(388-403).
Kaupp, G. (2006). CrystEngComm, 8(794-804).
Kurawa, M. A., & Yammama, S. G. (2014). Solid state synthesis, characterization, and antimicrobial study of 4,4'-bipyridinecopper (II) complexes. ChemSearch Journal, 5(2), 39-45.
Kurawa, M. A., & Yammama, S. G. (2014). Solid state synthesis, characterization, and biological activity of 4,4'-bipyridiniumtetrachloronickelate (II) and 4,4'-bipyridine dichloronickel (II) complexes. ChemSearch Journal, 5(1), 59-65.
Kurawa, M. A., & Adams, C. J. (2015). Solid state synthesis and single crystal X-ray crystallographic analysis of 2-oxo-2,3-dihydropyrimidin-1-ium{trichloridopyrimidin-2(1H)-one}cobaltate (II) [H2pyrno][CoCl3(Hpymo)]. ChemSearch Journal, 6(1), 52-56.
Kurawa, M. A., & Orpen, A. G. (2015). Synthesis and single crystal X-ray structure determination of bis-3,3',5,5'-tetramethyl-4,4'-bipyrazoliumtetrachloromanganate (II) monohydrate [H2Me4bpz]2[MnCl4]Cl2.H2O. ChemSearch Journal, 6(1), 68-73.
Lewis, H. D., Davis, J. W., Archibad, D. G., Demots, H. (1983). Protective effect of aspirin against acute myocardial infection and death in men with unstable angina: Results of the Veterans Administration Cooperative Study. The New England Journal of Medicine, 309(7), 396-403.
Livingstone, F. B. (1985). Frequencies of hemoglobin variant: Thalassemia, the glucose-6-phosphate dehydrogenase deficiency, G6PD variants, and ovalocytosis in human populations. Oxford University Press.
Lusi, M., Adams, C. J., Kurawa, M. A., & Orpen, A. G. (2009). Solid state synthesis of coordination compounds from basic metal salts. CrystEngComm, 10(12), 1790-1795.
Masram, D. T., & Debnath, A. (2013). Synthesis and characterization of some transition metal complexes of norflox-acin in the presence of 1,10-phenanthroline. Der Pharma Chemica, 5(5), 285-290.
Mochales, C., Briak-benabdeslam, H. E., Pau, M., Terol, A., Planell, J. A., & Boudeville, P. (2004). Dry mechanochemical synthesis of hydroxyapatites from DCPD and CaO: Influence of instrumental parameters on the reaction ki-netics. Biomaterials, 25(1151–1157).
Mottillo, C., Lu, Y., Pham, M., & Do, T. (2013). Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal–organic frameworks from metal (Zn, Co) oxides. Green Chemistry, 15(8), 2121–2131.
Nasiri-Tabrizi, B., Adhami, T., & Ebrahimi-Kahrizsangi, R. (2014). Effect of processing parameters on the formation of TiB2 nanopowder by mechanically induced self-sustaining reaction. Ceramics International, 40(5), 7345-7354.
Obaleye, J. A., & Lawal, A. (2007). Synthesis, characterization and antibacterial activity of aspirin and paracetamol metal complexes. Journal of BIOKEMISTRI, 19(1), 9-15.
Odesina, I. A. (2008). Essential Chemistry for Senior Secondary Schools (2nd ed.). Ibafo, Ogun State: TONAD Publishers Limited.
Olmos, A. R. V., Osorio, A. L. F., Ramos-Bautista, F., & Sato-Berrú, R. (2008). Nano science and nano technology: An Indian journal. Nano Science and Nano Technology, 2(1).
Orpen, A. G., Adams, C. J., & Kurawa, M. A. (2010). Coordination chemistry in the solid state: Synthesis and inter-conversion of pyrazolium salts, pyrazole complexes, and pyrazolate MOF. Dalton Transactions, 39(31), 6974-6984.
Orpen, A. G., Adams, C. J., Kurawa, M. A., & Lusi, M. (2008). Solid state synthesis of coordination compounds from basic metal salts. CrystEngComm, 10(12), 1790-1795.
Osowole, A. A., Agbaje, O. B. A., & Wakil, S. S. (2015). Synthesis, characterization and biological activity of parace-tamol and benzoic acid. International Journal of Applied Medical Science, 1(2), 77-87.
Othman, R., Xuan, N., Tram, T., Fauzi, A., & Noor, M. (2013). Dry mechanosynthesis of carbonate-substituted hy-droxyapatite. Journal of Materials Science and Engineering, 2(2), 18–27.
Palleros, D. R. (2000). Experimental Organic Chemistry. New York: John Wiley & Sons.
Pymo, Z., & Kurawa, M. A. (2012). Synthesis and structural analyses of bis(2-oxo-2,3-dihydropyrimidin-1-ium) tet-rachlorozincate(II) [H2Pymo][ZnCl4] and bis(pyrimidin-2-olate) zinc(II). Journal of Inorganic Chemistry, 3(2), 1–7.
Raithel, M., Baenkler, H. W., Naegel, A., Buchwald, F., Schultis, H. W., Backhaus, B., Kimpel, S., Koch, H., Mach, K., Hahn, E. G., & Konturek, P. C. (2005). Significance of salicylate intolerance in disease of the lower gastrointes-tinal tract. Journal of Physiology and Pharmacology, 56(5), 89-102.
Rao, P. V., Ashwini, K., & Ammani, S. (2007). Synthesis and characterization of transition metal complexes derived from some biologically active furoic acid hydrazones. Bulletin of the Chemical Society of Ethiopia, 21(1), 63-73.
Arribas-Bueno, R., Murphy, B., Verma, V., Crowley, C., Davern, P., & Synthesis, S. H. K. H. (2016). The crystallization of active pharmaceutical ingredients (APIs) onto excipient matrices. Journal of Pharmaceutical Research, 32(4), 1020-1027.
Rechenberg, H. R. (2000). Mechanosynthesis of intermetallic Fe100−xAlx obtained by reduction of Al/Fe2O3 compo-site. Journal of Physics: Condensed Matter, 12(45), 10579–10590.
Refat, M. S., El-korashy, S. A., & Hussien, M. A. (2014). Ligational, spectroscopic (infrared and electronic) and thermal studies on the Mn(II), Co(II), Fe(II) and Cu(II) complexes with analgesic drugs. Journal of Canadian Chemical Transactions, 2(1), 24-35.
Senna, G. E., Andri, G., Dama, A. R., Mezzelani, P., & Andri, L. (1995). Tolerability of imidazole salicylate in aspi-rin-sensitive patients. Allergy Proceedings, 16(5), 251-254.
Shah, M., & Sharma, A. (2013). Synthesis and characterization of some transition metal complexes derived from bi-dentate Schiff base ligand. IOSR Journal of Applied Chemistry, 3(5), 62-66.
Shah, M. K., & Maru, M. (2012). Transition metal complexes of 2-(substituted-lH-pyrozole-4-yl)-lH-benzo[d]imidazoles: Synthesis and characterization. Journal of Chemical and Pharmaceutical Research, 4(3), 1638-1643.
Stolle, A., Szuppa, T., Leonhardt, S. E. S., & Ondruschka, B. (2011). Ball milling in organic synthesis: Solutions and challenges. Chemical Society Reviews, 40(5), 2317-2329.
Suryanarayana, S. (2004). Mechanical Alloying and Milling. New York: Marcel Dekker.
Telia, A. C. (2011). Friendly synthesis of metal complexes of antimicrobial drugs. Report from Center for Supramolecular Chemistry Research, University of Cape Town, South Africa, 1-4.
Telia, A. C., Eke, U. B., & Owalude, S. O. (2013). Solvent-free mechanochemical synthesis and X-ray studies of Cu(II) and Ni(II) complexes of 5-(3,4,5-trimethoxybenzyl)pyrimidine-2,4-diamine (trimethoprim) in a ball-mill. Journal of Saudi Chemical Society, 17(1), 1319-6103.
Toussaint, K., Yang, X. C., Zielinski, M. A., Reigle, K. L., Sacavage, S. D., Nagar, S., & Raffa, R. B. (2010). What do we (not) know about how paracetamol works? Journal of Clinical Pharmacy and Therapeutics, 35(6), 617-638.
Tukur, D., Mishra, J., & Joshi, S. (2003). Synthesis and electrochemical study of analgesic drug acetaminophen. In-ternational Journal of Advanced Engineering and Applied Sciences, 3(4), 43-46.
Wang, G.-W. (2013). Mechanochemical organic synthesis. Chemical Society Reviews, 42(18), 7668-7700.
Wang, Z. L. (2000). Transition electron microscopy and spectroscopy of nanoparticles. In Z. L. Wang (Ed.), Character-ization of nanophase materials (pp. 37-80). Weinheim: Wiley-VCH.
West, A. R. (2014). Solid State Chemistry and its Application (2nd ed.). New York: John Wiley & Sons.
Yousif, E., & Ahmed, A. (2013). Synthesis and characterization of transition metal complexes of 4-amino-5-pyridyl-4H-1,2,4-triazole-3-thiol. Springer Open Journal, 2(1), 510.
Yusha'u, M., & Salisu, F. U. (2011). Inhibition activity of Detarium microcarpum extract on some clinical bacterial isolates. Biological and Environmental Science Journal for the Tropics, 8(4), 113-117.