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ABSTRACT 

 

Acaricide resistance (AR) is a major challenging tick control issue, 

a process by which the spread of tick-borne diseases, such as 

Crimean-Congo hemorrhagic fever (CCHF) can easily be stopped. 

The AR can be performed by ticks deploying some enzymes, such 

as carboxylesterases (CXEs) that degrades the these acaricide into 

harmless metabolites to the host tick. The current study was 

performed to understand the gene expression status of the CXE 

gene after experimental tick exposure to cypermethrin and 

deltamethrin. The study included the use of 40 adult female ticks 

divided into 20 ticks per acaricide used (10 exposure and 10 

controls). The ticks exposed to each acaricide as spraying in plates 

and were let without exposure for 10hrs until total RNA was 

extracted from all tick. The pooled RNA from each group was 

subjected to a quantitative real-time PCR (qRT-PCR) method. The 

results revealed significant (p<0.05) decreases in the mRNA 

expression level of the CXE gene after the exposure to the 

acaricides. The presented study, here, may indicate important 

information regarding susceptibility of ticks to cypermethrin and 

deltamethrin with no observed resistance.  
 

 

Introduction 

Ticks are ectoparasites that feed on blood and are found worldwide, particularly in tropical 

and subtropical areas. They infest terrestrial and semi-terrestrial vertebrates. Ticks also function 

as reservoirs for the transmission of infectious agents within their hosts. The livestock industry 

experiences considerable economic losses because of host blood exhaustion, overall discomfort, 

irritation, decreased milk products and meat, compromised immune functions, and destruction of 

hides, among various other adverse effects (1–5). 
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Prior to the the arrival of synthetic acaricides, various substances including cotton-seed oil, 

beaumont crude oil, and combinations of lard oil with sulfur or kerosene oil were employed 

topically on body surface for the purpose of managing tick infestations. The organophosphates 

(OPs), macrocyclic lactones (MLs), and synthetic pyrethroids (SPs) are all frequently employed 

acaricides that exert their effects on the central nervous system of ticks via different pathways (6–

8). These mechanisms involve some modulation, such as gamma-aminobutyric acid (GABA)-

gated chloride channels, inhibition of acetylcholine-esterase (AChEs), and targeting of voltage-

gated sodium channels. Various acaricides exhibit distinct target specificity and diverse 

mechanisms of action, thereby influencing the reproductive capacity, growth, and overall survival 

of different species of tick. Various methods can be employed to administer acaricides onto host 

animals, including spraying, washing, pouring, and injections (9–11). 

Tick AR refers to the heritable characteristics exhibited by a population of ticks, which 

have been specifically chosen due to their interaction with an acaricide. According to Rodriguez-

Vivas et al. (2018), there is a notable increase in the survival rate of ticks following their exposure 

to a particular concentration of acaricides. The mutated genes, which have been passed down from 

the ticks that have survived, are initially infrequent and seldom observed within the tick 

population. However, over time, their prevalence gradually rises. Acquired resistance can be 

defined as a form of resistance that arises due to heritable decreases in the susceptibility of a drug 

over time. Consequently, this leads to the development of phenotypic resistance (12–14). The 

concept of tolerance pertains to the capacity of a parasite to endure and persist in the presence of 

a particular dosage of medication that is typically deemed efficacious. The phenomenon of 

resistance occurring across various active chemical ingredients that share similar mechanisms of 

action is commonly referred to as cross-resistance (15–20). There are typically three primary forms 

of AR that are widely recognized. Metabolic resistance is attained through the process of acaricide 

detoxification, which involves the enzymatic activity of cytochrome P-450s (CYP450), esterases, 

and glutathione S-transferase (GST). The phenomenon known as "target site modification 

resistance" refers to the development of AR in neuronal enzymes and receptors (21,22). 

The primary factors that accelerate the selection of acaricide resistance in ticks include 

inaccurate dilution, insufficient application, continuous utilization, and overdosing. Some species 

may exhibit a higher susceptibility to the development of AR, as a result of the supportive 

conditions facilitated by their extensive distribution and/or unique characteristics of their life cycle 

(23–27). 

AR is a major challenging tick control issue, a process by which the spread of tick-borne 

diseases, such as CCHF can easily be stopped. The AR can be performed by ticks deploying some 

enzymes, such as CXEs that degrades the these acaricide into harmless metabolites to the host tick. 

The current study was performed to understand the gene expression status of the CXE gene after 

experimental tick exposure to cypermethrin and deltamethrin. 

Materials methods 

Samples 

The study included the use of 40 adult female ticks divided into 20 ticks per acaricide used 

(10 exposure and 10 controls). The ticks exposed to each acaricide as spraying in plates and were 

let without exposure for 10hrs until total RNA was extracted from all tick. 

Extraction of total tick RNA 

 The tick total RNA was extracted using the AddBIO kit (AddBIO, Korea) and depending 
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on the protocol accompanied the kit. In a brief, the ticks were placed in liquid nitrogen for crushing 

and then placed in a lysis buffer. Then, the remaining steps were followed. The resulted RNA was 

measured using Quantus™ Fluorometer (Promega, USA). The RNA was kept in -80°C for 

performing the qRT-PCR on pooled RNA from each group. 

Synthesis of cDNA 

 Using the AddBIO kit, the cDNA was produced by the following; 3μl, 10μl, 2μl, 1μl, and 

4μl (100ng) in a total volume of 20μl for H2O, 2X add script cDNA, dNTPs, random oligos 

hexamer, and RNA, respectively. In a thermocycler, the conditions were (25°C-10mins), (50°C-

60mins), and (80°C-5mins) for the priming, reverse transcriptase (RT), and RT inactivation, 

respectively. 

QRT-PCR 

 The AddScript RT-qPCR Syber master (AddBio, Korea) was used to perform qRT-PCR with the 

application of the kit instructional steps. Employing 4μl, 10μl, 2μl, and 2μl in 20µl total reaction 

volume for the H2O, AddScript RT-qPCR, (0.05pmol/20μl) each primer direction (Table 1), and 

cDNA, respectively. 

Table 1: Primers used (designed in the current study) 

Primer name Sequence ‘5---------3’ Accession 

number 

Carboxylesterase Carbo-F AGCATCGACCTCTCGTCCAAC JX392019.1 

Carbo-R GTCGGCATACTTGTCTTCGATG 

GAPDH 

(Housekeeping) 

GAB-F AGGCTCAGCAGCACATTGAT KU248453.1 

GAB-R ATGCCGAAGTTGTCGTGGAT 

 

The thermocycler BioRad (USA) conditions were 50°C-2mins, 95°C-10mins, 95°C-15s, 57°C-

30s, 72°C-30s, 95°C-15s, 60°C-60s, and +0.3°C of 95°C-15s for a one-repeat activation, a one-

repeat initial denaturation, 40X of (denaturation, annealing, and extension), a one-repeat melting 

analysis, a one-repeat melting analysis, and a one-repeat melting analysis, respectively. A 

normalization step was done on the RNA using the 2-∆∆CT method developed by Schmittgen and 

Livak, (2008) (28). 

 

 

Results 

 The results revealed significant (p<0.05) decreases in the mRNA expression level of the 

CXE gene after the exposure to the acaricides in a comparison with that from the control group 

(Figure 1). The fold changes for the mRNA of the CXE gene related to the cypermethrin and 

deltamethrin were (0.4 and 0.5). In the case of the control group, the fold change was (1.5). 
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Discussion 

 The development of resistance to acaricides has significantly impeded the ability of 

livestock farmers to effectively handle and control ticks and tick-borne diseases. The global 

research community has been actively investigating the emergence of AR in ticks. This issue has 

garnered significant attention due to the challenges and costs associated with the development of 

novel acaricides and the breeding of cattle that are resistant to ticks. The optimal approach for 

evaluating AR in tick populations involves assessing its efficacy against ticks. Nevertheless, 

laboratory bioassays conducted in vitro offer valuable insights into the occurrence of acaricide 

resistance development. Numerous in-vitro studies have been conducted globally to investigate 

the characterization of AR in tick communities (29–33). 

The initial step in obtaining phenotypic data on the extent of tick resistance involves the 

utilization of bioassay methods to characterize AR in communities of ticks that have displayed 

AR. Most reports discussing the emergence of phenotypic AR in tick communities globally focus 

Figure 1: Carboxylesterase gene mRNA expression from tick exposed to cypermethrin and 

deltamethrin. A. Amplification curve. B. Melting curve. C. Fold change of carboxylesterase gene 

expression.   
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on Rhipicephalus (Boophilus) microplus. In the study conducted, a total of 3939 tick populations 

were examined to assess the emergence of resistance. Out of these populations, 3391 (86%) were 

identified as R. (B) microplus. The analysis revealed a global combined incidence estimation of 

AR development in these ticks to be 66.2% (34–36).  

The development of AR on a global scale has exhibited a higher rate in these ticks. 

Nevertheless, a decreased prevalence of AR was noted in the following tick species: R. annulatus 

and H. anatolicum. R. (B) microplus and R. (B) decoloratus are ticks that exclusively infest a single 

host. The accelerated development of AR in these ticks have been linked to their shorter life cycle 

and greater rate of reproduction, necessitating frequent administration of acaricides. The repeated 

exposure of substantial amounts of the tick community to acaricides contributes to the emergence 

and dissemination of resistant ticks, thereby facilitating the evolution and spread of AR (37,38). It 

is worth noting that AR is typically infrequent in ticks that have multiple hosts, as these ticks 

exhibit a broad range of hosts encompassing both domestic and wild animals. Furthermore, it is 

commonly observed that they exhibit extended life cycles, wherein the duration of the parasitic 

stage is typically shorter than the intervals between treatments commonly employed by agricultural 

practitioners. Consequently, a greater percentage of these ticks typically evade acaricide treatment, 

known as refugia, leading to a diminished level of selection pressure for the development of AR 

(39). Numerous countries, such as Benin, Brazil, Mexico, and India have documented instances of 

heightened resistance to synthetic compounds, such as deltamethrin and cypermethrin within 

populations of ticks (40,41). 

 

Conclusion 

 The presented study, here, may indicate important information regarding susceptibility of 

ticks to cypermethrin and deltamethrin with no observed resistance. 
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