WEB OF SYNERGY:

International Interdisciplinary Research Journal

Volume 2 Issue 4, Year 2023 ISSN: 2835-3013 https://univerpubl.com/index.php/synergy

On Zero Divided by Zero

Ahmed Mezher Marir

Al-Mustansiriyah University, College of Education, Department of Mathematics, Specialty Algebra, Iraq

Article Information

Received: February 19, 2023 Accepted: March 20, 2023 Published: April 21, 2023

Keywords: mathematical system, semi group, group, commutative group, ring, inverse two operations and zero divided by zero.

ABSTRACT

In this study, we define the concept of inverse two operations and show that, i) Let (G,*) be a group, for all $a, b \in G$, then $a *^{-1} b = a * b^{-1}$ ii) Let (G,*) be a group, $e \in G$ such that a * e = e * a = a for all $a \in G$, then $a *^{-1} a = e$ for all $a \in G$.

iii) Let (G,*,#) be a ring, $e \in G$ such that a * e = e * a = a for all $a \in G$ then $e \#^{-1} e = x$ for all $x \in G$.

iv) Let $\ddot{O} = \{a : a \times 0 = 0\}$, + be an ordinary addition operation, \times be an ordinary multiplication, then $(\ddot{O}, +, \times)$ be a ring, $0 \in \ddot{O}$ such that a + 0 = 0 + a = a, \div be an inverse operation for \times , and $0 \div 0 \equiv \ddot{O}^{\circ r}$, *i.e* $0 \div 0 = a$, for all $a \in \ddot{O}$.

1. Introduction

Let *G* be a non empty set, then (G,*) is called a mathematical system if * is binary operation defined on *G*, let (G,*) be a mathematical system, then (G,*) is called a semi group if * is associative i.e (a*b)*c = a*(b*c) for all $a, b, c \in G$, let (G,*) be a semi group, then (G,*)is called a group if there exist $e \in G$ such that a*e = e*a = a for all $a \in G$ and for all $a \in G$, there exist $a^{-1} \in G$ such that $a*a^{-1} = a^{-1}*a = e$, let (G,*) be a group, then (G,*) is called a commutative group if a*b = b*a for all $a, b \in G$ [1], [3]. Let (G,*) be a commutative group and (G,#) be a semi group, then (G,*,#) is called a ring if a#(b*c) = (a#b)*(a#c) and (a*b)#c = (a#c)*(b#c), for all $a, b, c \in G$ [2].

2. Inverse two operations:

In this section we present the concept of inverse two operations and we study the properties of them.

We begin with the following definition:

Definition 2.1:

Let (G,*) is mathematical system, then $*^{-1}$ is called inverse operation for *, also * is called inverse operation for $*^{-1}$, i.e * and $*^{-1}$ are inverse two operations, if a * b = c then $a = c *^{-1} b$ and if $a = c *^{-1} b$ then a * b = c (i.e a * b = c iff $a = c *^{-1} b$) for all $a, b, c \in G$.

Example 2.2:

(R, +) is mathematical system such that R is the set of real numbers and + is ordinary addition operation, then ordinary subtraction operation (-) is inverse operation for +, since a + b = c iff a = c - b for all $a, b, c \in R$.

Example 2.3:

 (R, \times) is mathematical system such that R is the set of real numbers and \times is ordinary multiplication operation, then ordinary division operation (\div) is inverse operation for \times , since $a \times b = c$ iff $a = c \div b$ for all $a, b, c \in R$.

Remark 2.4:

Let (G,*) is mathematical system, $*^{-1}$ be an inverse operation for *, then for all $a, b, c \in G$

i) a * b * c = (a * b) * cii) $a *^{-1} b *^{-1} c = (a *^{-1} b) *^{-1} c$ iii) $a * b *^{-1} c = (a * b) *^{-1} c$ iv) $a *^{-1} b * c = (a *^{-1} b) * c$ Lemma 2.5:

Lemma 2.5:

Let (G,*) is mathematical system, $*^{-1}$ be an inverse operation for *, then for all $a, b \in G$ i) $a * b *^{-1} b = a$ ii) $a *^{-1} b * b = a$

Proof.

i) Let $a * b = c \dots (1)$ by Definition 2.1, we get $a = c *^{-1} b \dots (2)$

From (1) and (2), we get $a = (a * b) *^{-1} b$

By Remark 2.4 (iii), we get $a * b *^{-1} b = a$

ii) Let $c * b = a \dots (1)$ such that $c \in G$ by Definition 2.1, we get

 $c = a *^{-1} b \dots (2)$ from (1) and (2), we get $(a *^{-1} b) * b = a$,

by Remark 2.4 (iv), we get $a *^{-1} b * b = a$.

Lemma 2.6:

Let ($G_{,*}$) is mathematical system, $*^{-1}$ be an inverse operation for *, then for all $a, b, c \in G$

i) if a * c = b * c then a = b

ii) if $a *^{-1} c = b *^{-1} c$ then a = b

Proof.

i) a * c = b * c

by Definition 2.1, we get $a = b * c *^{-1} c$, by Lemma 2.5 (i), we get a = b

ii) $a *^{-1} c = b *^{-1} c$

by Definition 2.1, we get $a = b *^{-1} c * c$, by Lemma 2.5 (ii), we get a = bLemma 2.7:

Let (*G*,*) be a semi group, $*^{-1}$ be an inverse operation for *, then (*a***b*) $*^{-1}$ *c* = *a**(*b**^{-1}*c*)

Proof.

Let $(a * b) *^{-1} c = x$ by D efinition 2.1,

we get $a * b = x * c \dots (1)$

Let $b *^{-1} c = y$ by Definition 2.1, we get $b = y * c \dots (2)$

From (1) and (2), we get a * (y * c) = x * c, (G,*) be a semi group i.e * is associative, we get (a * y) * c = x * c

By Lemma 2.6 (i), we get a * y = x

i.e $a * (b *^{-1} c) = (a * b) *^{-1} c$

Lemma 2.8:

Let (*G*,*) be a semi group, $*^{-1}$ be an inverse operation for *, then $a *^{-1} (b * c) = a *^{-1} c *^{-1} b$.

Proof.

Let $a *^{-1} (b * c) = x$ by Definition 2.1, we get a = x * (b * c), (G, *) be a semi group i.e * is associative, we get a = (x * b) * c by Definition 2.1, we get $a *^{-1} c = x * b$, also $a *^{-1} c *^{-1} b = x$

i.e $a *^{-1} (b * c) = a *^{-1} c *^{-1} b$

Theorem 2.9:

Let (G,*) be a group, $*^{-1}$ be an inverse operation for *, then $a *^{-1} b = a * b^{-1}$, such that $b * b^{-1} = b^{-1} * b = e$ and a * e = e * a = a, for all $a \in G$.

Proof.

Let $a *^{-1} b = x$ by Definition 2.1, we get $a = x * b \dots (1)$

Let $a * b^{-1} = y$, $(a * b^{-1}) * b = y * b$, (G, *) be a semi group i.e * is associative, we get $a * (b^{-1} * b) = y * b$, a * e = y * b, a = y * b ... (2)

From (1) and (2), we get x * b = y * b by Lemma 2.6 (i), we get x = y i.e $a *^{-1} b = a * b^{-1}$

Theorem 2.10:

Let (G,*) be a group, $*^{-1}$ be an inverse operation for *, then $a *^{-1} a = e$ such that a * e = e * a = a for all $a \in G$.

Proof.

Let $a *^{-1} a = x$ by Definition 2.1, we obtain a = x * a, but a = e * a, we get x * a = e * a by Lemma 2.6 (i), we obtain x = e i.e $a *^{-1} a = e$.

(Or by Theorem 2.9 $a *^{-1} a = a * a^{-1} = e$)

Lemma 2.11:

Let (G,*) be a group, $e \in G$ such that a * e = e * a = a for all $a \in G$, if b * b = b, $b \in G$, then b = e.

Proof.

b * b = b, b * b = e * b by Lemma 2.6 (i), we get b = e.

Lemma 2.12:

Let (G,*) be a group, $e \in G$ such that a * e = e * a = a for all $a \in G$, then e * e = e

Proof.

Let x = e * e, x * e = e * e by Lemma 2.6 (i), we get x = e, i.e e * e = e.

Lemma 2.13:

Let (G, *, #) be a ring, $e \in G$ such that a * e = e * a = a for all $a \in G$ then x # e = e for all $x \in G$.

Proof.

Let $x \in G$, by Lemma 2.12 x#e = x#(e * e), (G,*,#) be a ring, i.e x#(e * e) = (x#e) * (x#e), we get x#e = (x#e) * (x#e), by Lemma 2.11 x#e = e. Theorem 2.14:

Let (G, *, #) be a ring, $e \in G$ such that a * e = e * a = a for all $a \in G$, then $e #^{-1} e = x$ for all $x \in G$.

Proof.

Let $x \in G$, by Lemma 2.13 x # e = e, (G, *, #) be a ring, i.e (G, #) is mathematical system, by Definition 2.1, we get $x = e \#^{-1} e$.

Example 2.15:

Let \mathbb{C} be a complex numbers set, + be an ordinary addition operation, \times be an ordinary multiplication operation, then $(\mathbb{C}, +, \times)$ be a ring, $0 \in \mathbb{C}$ such that a + 0 = 0 + a = a, \div be an inverse operation for \times (Example 2.3), by Theorem 2.14, we get $0 \div 0 = x$ for all $x \in \mathbb{C}$.

Definition 2.16:

Let A be a non empty set, then $A^{or} = a$, for all $a \in A$, i.e if $A = \{a, b, c, d, \dots, \}$, then $A^{or} \equiv$ the concept (a or b or c or d or ...) Note the symbol (\equiv) means equivalent i.e A^{or} is the same concept (a or b or c or d or ...)

Example 2.17:

Let $A = \{1,2\}$, then $A^{or} = 1$ and $A^{or} = 2$, since $\{1,2\}^{or} \equiv (1 \text{ or } 2)$ Note (1 or 2) = 1 correct phrase, (1 or 2) = 2 correct phrase.

Remark 2.18:

 $\{a\}^{or} = a \quad \forall a \in \mathbb{C}.$

Remark 2.19:

Let $n \in Z^+$, then $(x)^{\frac{1}{n}} = y$ iff $x = y^n$ i.e $(x)^{\frac{1}{n}} = y$ for all $y \in \{z : z^n = x\}$, $(x)^{\frac{1}{n}} \equiv \{z : z^n = x\}^{or}$

Example 2.20:

$$(25)^{\frac{1}{2}} \equiv \{5, -5\}^{or}$$
 but $\sqrt{25} = 5$ or $\sqrt{25} \equiv \{5\}^{or}$
i.e $(25)^{\frac{1}{2}} = \sqrt{25}$ and $(25)^{\frac{1}{2}} \neq \sqrt{25}$ Since 5 or $-5 \neq \sqrt{25}$ correct phrase

i.e the concept $(25)^{\frac{1}{2}}$ is not equivalent to the concept $\sqrt{25}$.

Example 2.21:

 $\int dx = x + c \quad \text{such that } c \quad \text{is constant, then} \quad \int dx \equiv x + R^{or} \equiv (x + R)^{or}$ Such that R is real numbers, $x + R = \{ y : y = x + r, r \in R \}$

Remark 2.22:

Let $\ddot{O} = \{a : a \times 0 = 0\}$, + be an ordinary addition operation × be an ordinary multiplication, then $(\ddot{O}, +, \times)$ be a ring, $0 \in \ddot{O}$ such that a + 0 = 0 + a = a, ÷ be an inverse operation for ×, by Theorem 2.14 and Definition 2.16, we get $0 \div 0 \equiv \ddot{O}^{or}$, i.e $0 \div 0 = a$, for all $a \in \ddot{O}$. Note C subset of \ddot{O} .

Remark 2.23:

Let y = 1 is equation of $\stackrel{\leftrightarrow}{L}$, then $(r, 1) \in \stackrel{\leftrightarrow}{L}$, $\forall r \in R, R$ is real numbers, i.e Set all Point $\stackrel{\leftrightarrow}{L} = \{(r, 1) : r \in R\}$. Let $y = \frac{x}{x}$ is equation of geometric shape T, if $x \neq 0$, then y = 1, if x = 0, then $y = R^{or}$, i.e y = a for all $a \in R$, we get $(b, 1) \in T$, $\forall b \in R, b \neq 0$ and $(0, a) \in T$, $\forall a \in R$, Set all Point $T = \{(0, a) : a \in R\} \cup \{(b, 1) : b \in R, b \neq 0\}$, we conclude the geometric shape T is $\stackrel{\leftrightarrow}{\leftarrow} U$ y - axis.

Reference:

- 1. Alperin, J.L.And Bell, R.B. " Groups and representations ", Volume 162 of Graduate Texts in Mathematics, Springer Verlag, New York, 1995.
- 2. Hideyuki Matsumura, " Commutative Ring Theory ", Cambridge University Press, 2002.
- 3. Rotman, J.J. " An introduction to the theory of groups ", Volume 148 of Graduate Texts in Mathematics. Springer Verlag, New York, Fourth edition, 1995.